Abstract

We review and discuss some recent resonance enhanced multiphoton ionization (REMPI) studies of small molecules, emphasizing the role that shape resonances and Rydberg orbital evolution play in determining vibrational and rotational ion distributions. Strong non-Franck-Condon effects observed in ion vibrational distributions for REMPI of O2 via the C 3Πg and d 1Πg Rydberg states are partially attributed to a σu shape resonance, previously observed in ground state photoionization of diatomic molecules. Autoionization of repulsive valence states also induces non-Franck-Condon effects in these REMPI spectra. Significant non-Franck-Condon effects in molecular REMPI spectra also arise from a mechanism associated with rapid evolution of the resonantly populated Rydberg orbital with changing inter-nuclear distance. These effects should be most pronounced in diatomic hydrides, and are illustrated by theoretical predictions of vibrational and rotational ion distributions for REMPI of OH and CH via the D 2Σ− and E' 2Σ+ Rydberg states, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.