Abstract
A control design for a linear large-scale interconnected system composed of identical subsystems is presented in this paper. The control signal of all subsystems is sampled. For different subsystems, the sampling times are not identical. Nonetheless, it is assumed that a bound exists for the maximal sampling time. The control algorithm is designed using the Wirtinger inequality, and the non-fragile control law is proposed. The size of the linear matrix inequalities to be solved by the proposed control algorithm is independent of the number of subsystems composing the overall system. Hence, the algorithm is computationally effective. The results are illustrated by two examples. The first example graphically illustrates the function of the proposed algorithm while the second one compares with a method for stabilizing a large-scale system obtained earlier, thus illustrating the improved capabilities of the presented algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.