Abstract

This paper focuses on the problem of non-fragile hybrid guaranteed cost control for a class of uncertain switched linear systems. The controller gain to be designed is assumed to have additive gain variations. Based on multiple-Lyapunov function technique, the design of non-fragile hybrid guaranteed cost controllers is derived to make the corresponding closed-loop system asymptotically stable for all admissible uncertainties. Furthermore, a convex optimization approach with LMIs constraints is introduced to select the optimal non-fragile guaranteed cost controllers. Finally, a simulation example illustrates the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.