Abstract

We investigated the transfer of persistent organic pollutants (POPs) from unspiked bottom sediment to a benthic marine fish, marbled sole ( Pleuronectes yokohamae), via non-food-chain pathways, i.e., via sediment particles and water column. One-year-old sole were held for 28 days in an exposure tank with bottom sediment or in a control tank. o, p′-DDE and tri- to penta-chlorobiphenyls were transferred from the sediment to the fish via non-food-chain pathways, as demonstrated by concentrations in the exposed fish at 2.5–30 times the control levels. A model analysis based on first-order kinetic equations indicated that the overall rate constant of transfer of these compounds from sediment to fish was generally lower than that from food (median of ratio, 0.48). It also suggested that relatively high concentrations of the other POPs in the food and the longer times necessary for them to reach a steady state masked any transfer of them from the sediment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.