Abstract
There has been a recent drive to develop non-fluorinated superhydrophobic coatings due to the toxicity, cost, and environmental impact of perfluorinated components. One of the main challenges in developing superhydrophobic coatings in general and non-fluorinated superhydrophobic coatings in particular is optimization of mechanical durability, as the rough asperities required for maintaining superhydrophobicity tend to be easily removed by abrasion. Although rough and self-similar hydrophobic surfaces composed of loosely adhered particles or highly porous structures tend to produce excellent superhydrophobicity, they have low inherent mechanical durability and their longevity under real conditions is compromised. To address this issue, this work investigates the addition of a polymeric matrix material (the binder) to hydrophobic nanoparticles (the filler) to produce spray-coated superhydrophobic surfaces with improved inherent mechanical durability. Hansen solubility parameters were used to tune the interactions between the binder, filler, and solvent used to deliver the coating. It was found that lowering the binder/filler miscibility and using a poor solvent mixture generates more surface roughness, thereby lowering the minimum filler load required to achieve superhydrophobicity. This leads to an overall more inherently durable system that remains hydrophobic for thousands of light abrasion cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.