Abstract
The forming mechanism of non-filamentous sludge bulking during aerobic granulation were investigated basing on three feeding strategies (R1 direct aeration after fast feeding, R2 anaerobic stirring after fast feeding and R3 anaerobic plug-flow slow feeding). Results showed that strong selection stress (shortening settling time) led to a sharp flocs washout and the subsequent increase of food to microorganisms (F/M) in R1 and R3 reactors, but not found in R2 due to the different strategies of feeding modes. With the increase of F/M, zeta potential and hydrophobicity of sludge surfaces significantly decreased and thus leading to an enhanced repulsive force and energy barriers for sludge aggregation. Particularly, when F/M exceeded 1.2 kgCOD/(kgMLSS·d), non-filamentous sludge bulking was ultimately triggered in R1 and R3. Further analysis showed that massive extracellular exopolysaccharide (PS) accumulated on the surfaces of non-filamentous bulking sludge due to the increased abundance of the microorganisms related to PS secretion during sludge bulking. In addition, significantly increased intracellular second messenger (c-di-GMP), a key substance regulating PS biosynthesis, was confirmed via its concentration determination as well as microbial function prediction analysis, which played a critical role in sludge bulking. Combing with the systematic detection from surface plasmon resonance system, rheometer and size-exclusion chromatography-multiangle laser light detection-refractive index system, higher molecular weight, compact conformation, higher viscosity and higher hydrophilicity was determined in sludge bulking PS relative to PS extracted from non-filamentous bulking sludge. Clearly, the changes of PS (content, structures and properties) driven by c-di-GMP are the dominant mechanism for the formation of non-filamentous sludge bulking during aerobic granulation. This work could provide theoretical support for successful start-up and application of aerobic granular sludge technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.