Abstract
SignificanceMost metals display an electron-scattering rate [Formula: see text] that follows [Formula: see text] at low temperatures, as prescribed by Fermi liquid theory. But there are important exceptions. One of the most prominent examples is the "strange" metal regime in overdoped cuprate supercondcutors, which exhibits a linear T dependence of the scattering rate [Formula: see text] that reaches a putative Planckian limit. Here, using cutting-edge computational approaches, we show that T-linear scattering rate can emerge from the overdoped Hubbard model at low temperatures. Our results agree with cuprate experiments in various aspects but challenge the Planckian limit. Finally, by identifying antiferromagnetic fluctuations as the physical origin of the T-linear scattering rate, we discover the microscopic mechanism of strange metallicity in cuprates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.