Abstract

Motivated by the intrinsic non-Fermi-liquid behavior observed in the heavy-fermion quasicrystal Au51Al34Yb15, we study the low-temperature behavior of dilute magnetic impurities placed in metallic quasicrystals. We find that a large fraction of the magnetic moments are not quenched down to very low temperatures T, leading to a power-law distribution of Kondo temperatures P(T(K))∼T(K)(α-1), with a nonuniversal exponent α, in a remarkable similarity to the Kondo-disorder scenario found in disordered heavy-fermion metals. For α<1, the resulting singular P(T(K)) induces non-Fermi-liquid behavior with diverging thermodynamic responses as T→0.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call