Abstract

We study two-dimensional materials where electrons are coupled to the vacuum electromagnetic field of a cavity. We show that, at the onset of the superradiant phase transition towards a macroscopic photon occupation of the cavity, the critical electromagnetic fluctuations, consisting of photons strongly overdamped by their interaction with electrons, can in turn lead to the absence of electronic quasiparticles. Since transverse photons couple to the electronic current, the appearance of non-Fermi-Liquid behavior strongly depends on the lattice. In particular, we find that in a square lattice the phase space for electron-photon scattering is reduced in such a way to preserve the quasiparticles, while in a honeycomb lattice the latter are removed due to a nonanalytical frequency dependence of the damping ∝|ω|^{2/3}. Standard cavity probes could allow us to measure the characteristic frequency spectrum of the overdamped critical electromagnetic modes responsible for the non-Fermi-liquid behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.