Abstract

Non extreme points of compact, convex integral families of analytic functions are investigated. Knowledge about extreme points provides a valuable tool in the optimization of linear extremal problems. The functions studied are determined by a 2-parameter collection of kernel functions integrated against measures on the torus. Families from classical geometric function theory such as the closed convex hull of the derivatives of normalized close-to-convex functions, the ratio of starlike functions of different orders, as well as many others are included. However for these families of analytic functions, identifying “all” the extreme points remains a difficult challenge except in some special cases. Aharonov and Friedland [1] identified a band of points on the unit circle which corresponds to the set of extreme points for these 2-parameter collections of kernel functions. Later this band of extreme points was further extended by introducing a new technique by Dow and Wilken [3]. On the other hand, a technique to identify a non extreme point was not investigated much in the past probably because identifying non extreme points does not directly help solving the optimization of linear extremal problems. So far only one point on the unit circle has beenidentified which corresponds to a non extreme point for a 2-parameter collections of kernel functions. This leaves a big gap between the band of extreme points and one non extreme point. The author believes it is worth developing some techniques, and identifying non extreme points will shed a new light in the exact determination of the extreme points. The ultimate goal is to identify the point on the unit circle that separates the band of extreme points from non extreme points. The main result introduces a new class of non extreme points.

Highlights

  • Non extreme points of compact, convex integral families of analytic functions are investigated

  • We investigate non extreme points of the compact convex families in H(D) defined by, for p, q > 0

  • In the search for non extreme points of Fp,q, our particular choice of probability measures in this paper captures the known non extreme points [1] as we expected, but more excitingly it leads to the existence of, for given p and q, the non extreme points of Fp,q nearby when p is a positive integer

Read more

Summary

Introduction

Non extreme points of compact, convex integral families of analytic functions are investigated. The following are well-known facts: (i) If there exists a probability measure μ that is not a unit point mass and representing a function f (z) = fμ(z), f is a non extreme point of Fp,q The second question addresses the existence of non extreme points

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.