Abstract

Using the low energy limit of type IIB superstring theory, we obtain the non-extremal limit of deformed conifold geometry which is dual to the IR limit of large N thermal QCD.At low temperatures, the extremal geometry without black hole is favored while at high temperatures, the field theory is described by non-extremal black hole geometry. We compute the ten dimensional on shell action for extremal and non-extremal geometries and demonstrate that at a critical temperature $T_c$ there is a first order confinement to deconfinement phase transition. We compute $T_c$ as a function of 'tHooft coupling and study the thermodynamics of the dual gauge theory by evaluating the free energy and entropy of the ten dimensional geometry. We find agreement with the conformal limit while thermodynamics of non-conformal strongly coupled gauge theories is explored using the black hole geometries in non-AdS space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.