Abstract
We construct new static, spherically symmetric non-extremal black hole solutions of four-dimensional ${\cal N}=2$ supergravity, using a systematic technique based on dimensional reduction over time (the c-map) and the real formulation of special geometry. For a certain class of models we actually obtain the general solution to the full second order equations of motion, whilst for other classes of models, such as those obtainable by dimensional reduction from five dimensions, heterotic tree-level models, and type-II Calabi-Yau compactifications in the large volume limit a partial set of solutions are found. When considering specifically non-extremal black hole solutions we find that regularity conditions reduce the number of integration constants by one half. Such solutions satisfy a unique set of first order equations, which we identify. Several models are investigated in detail, including examples of non-homogeneous spaces such as the quantum deformed $STU$ model. Though we focus on static, spherically symmetric solutions of ungauged supergravity, the method is adaptable to other types of solutions and to gauged supergravity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.