Abstract

The short time evolution of three dimensional small perturbations is studied. Exhibiting spectral asymptotic stability, thin discs are nonetheless shown to host intensive hydrodynamical activity in the shape of non modal growth of initial small perturbations. Two mechanisms that lead to such behavior are identified and studied, namely, non-resonant excitation of vertically confined sound waves by stable planar inertia-coriolis modes that results in linear growth with time, as well as resonant coupling of those two modes that leads to a quadratic growth of the initial perturbations. It is further speculated that the non modal growth can give rise to secondary strato-rotational instabilities and thus lead to a new route to turbulence generation in thin discs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.