Abstract

Temperature fluctuations impact battery performance, safety, and health. Industry-standard cell-level models of these phenomena ignore thermal gradients within the electrodes’ active material, i.e., assume the latter to be in “thermal equilibrium”. We present a “non-equilibrium” thermal model that explicitly accounts for spatial variability of temperature with the active material (and the carbon-binder domain). We investigate the conditions, expressed in terms of the heat-generation rate and the thermal properties of a cell’s liquid (electrolyte) and solid (active material and CBD) phases, under which the thermal equilibrium assumption breaks down and our model should be used instead. The differences between these two thermal models are investigated further by coupling them with an industry-standard electrochemical model. The resulting thermal–electrochemical model demonstrates the importance of thermal gradients within the active material at high C-rates (discharge current densities) and for large grain sizes. Under these conditions, the equilibrium assumption underestimates internal temperature by as much as 50%. These two thermal models are then applied to a commercial NMC battery with multiple units. Our non-equilibrium model predicts the battery surface temperature that is in good agreement with measurements, while the equilibrium model underestimates the observed temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.