Abstract

The non-equilibrium steady states of a semi-infinite quasi-one-dimensional univalent binary electrolyte solution, characterised by non-vanishing electric currents, are investigated by means of Poisson-Nernst-Planck (PNP) theory. Exact analytical expressions of the electric field, the charge density and the number density are derived, which depend on the electric current density as a parameter. From a non-equilibrium version of the Grahame equation, which relates the total space charge per cross-sectional area and the corresponding contribution of the electric potential drop, the current-dependent differential capacitance of the diffuse layer is derived. In the limit of vanishing electric current these results reduce to those within Gouy-Chapman theory. It is shown that improperly chosen boundary conditions lead to non-equilibrium steady state solutions of the PNP equations with negative ion number densities. A necessary and sufficient criterion on surface conductivity constitutive relations is formulated which allows one to detect such unphysical solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.