Abstract

We report a combined experimental and first principles study of an extremely immiscible alloy of Mo with 1 and 2 at.% Na, which was produced by high-energy ball milling. The microstructure of the as-milled and annealed state were examined by various methods, including atom-probe tomography (APT), transmission electron microscopy, and energy-dispersive (EDX) analysis. Despite the complete immiscibility of the Mo-Na system in the solid and even in the liquid state, APT measurements clearly evidence the formation of a true nanocrystalline solid-solution microstructure with insignificant Na clustering for samples with 1 at.% Na. In agreement with our x-ray diffraction experiments, first principles calculations expose that the Na atoms do not expand the Mo lattice, which is in contrast to predictions using Vegard's rule. Heating at 700 °C induces only slight grain growth while the solid solution remains remarkably stable without any decomposition. On the contrary, after annealing at 900 °C first Na segregations at triple junctions and significant grain growth are observable, although the solid solution still retains most of the dissolved Na.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.