Abstract
Permeation and separation of H 2/CO binary mixtures in nanoporous carbon membranes are investigated by non-equilibrium molecular dynamics simulations. The carbon membrane pores are modeled as slit-like pores with entrance and exit. The buffer regions between the control volumes and membrane pores are employed to take into account the effects of the entrance and exit of the membrane pores. The effects of pore width, separation temperature, feed gas pressure, the molar fraction of hydrogen, and membrane thickness on flux and dynamic separation factor are discussed. The simulation results indicate that the pore width strongly affects the flux and dynamic separation factor. In addition, molecular sieving dominates the separation of H 2/CO mixtures, when the pore width is smaller by about 0.64 nm, and, in this case, the dynamic separation factor reaches 52.88 at 0.5 MPa and 300 K. The dynamic separation factor increases with the separation temperature and the decrease of feed gas pressure, while changes slightly with the molar fraction of H 2 in the feed gas. Moreover, the dynamic separation factor increases with membrane thickness at the pore width of 0.64 nm, while decreases at the pore width of 1.01 nm due to different separation mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Separation and Purification Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.