Abstract

Nanostructured bimetallic reactive multilayers can be conveniently produced by ball milling of elemental powders. This research explores the non-equilibrium microscale conductive thermal transport in ball-milled particulate fractal structures during fabrication, arising from heat dissipation by bulk plastic deformation and surface friction. Upon impactor collisions, temperature increments are determined at interface joints and domain volumes using Green's functions, mirrored by source images with respect to warped ellipsoid domain boundaries. Heat source efficiency is calibrated via laboratory data to compensate for thermal expansion and impactor inelasticity, and the thermal analysis is coupled to a dynamic mechanics model of the particulate fracture. This thermomechanical model shows good agreement with the fractal dimensions of the observed microstructure from ball milling experiments. The model is intended to provide a comprehensive physical understanding of the fundamental process mechanism. In addition, the model could serve as a real-time thermal observer for closed-loop process control, as well as for interfacial diffusion and reaction analysis during ball milling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.