Abstract

Dyson’s model is a one-dimensional system of Brownian motions with long-range repulsive forces acting between any pair of particles with strength proportional to the inverse of distances with proportionality constant β/2. We give sufficient conditions for initial configurations so that Dyson’s model with β = 2 and an infinite number of particles is well defined in the sense that any multitime correlation function is given by a determinant with a continuous kernel. The class of infinite-dimensional configurations satisfying our conditions is large enough to study non-equilibrium dynamics. For example, we obtain the relaxation process starting from a configuration, in which every point of $${\mathbb{Z}}$$ is occupied by one particle, to the stationary state, which is the determinantal point process with the sine kernel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.