Abstract

Motivated by the experimental realization of Dicke model in optical cavities, we model an optomechanical system consisting of two-level BEC atoms with transverse pumping. We investigate the transition from normal and inverted state to the superradiant phase through a detailed study of the phase portraits of the system. The rich phase portraits generated by analytical arguments display two types of superradiant phases, regions of coexistence and some portion determining the persistent oscillations. We study the time evolution of the system from any phase and discuss the role of mirror frequency in reaching their attractors. Further, we add an external mechanical pump to the mirror which is capable of changing the mirror frequency through radiation pressure and study the impact of the pump on the phase portraits and the dynamics of the system. We find the external mirror frequency changing the phase portraits and even shifting the critical transition point, thereby predicting a system with controllable phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.