Abstract

We study the dynamical behaviour of mesoscopic systems in contact with a thermal bath, described either via a non-linear Langevin equation at the trajectory level —or the corresponding Fokker-Planck equation for the probability distribution function at the ensemble level. Our focus is put on one-dimensional —or d-dimensional isotropic— systems in confining potentials, with detailed balance —fluctuation-dissipation thus holds, and the stationary probability distribution has the canonical form at the bath temperature. When quenching the bath temperature to low enough values, a far-from-equilibrium state emerges that rules the dynamics over a characteristic intermediate timescale. Such a long-lived state has a Dirac-delta probability distribution function and attracts all solutions over this intermediate timescale, in which the initial conditions are immaterial while the influence of the bath is still negligible. Numerical evidence and qualitative physical arguments suggest that the above picture extends to higher-dimensional systems, with anisotropy and interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.