Abstract

The covalent binding of [3H]glycerol to C3 by the transfer of the acyl group of the internal thioester of C3 to the hydroxy group of glycerol can be activated either proteolytically by trypsin or by various chaotropes and denaturants. The activation of binding by trypsin or KBr showed similar dependence on the concentration of glycerol, indicating a similar activation mechanism. It is therefore concluded that the conformational change of the protein is the critical step in the binding reaction, and that the conversion of C3 into C3b under physiological conditions is only a means to induce the conformational change. Guanidinium chloride induces the binding of glycerol to C3 at concentrations of about 1 M. On increasing the concentration of guanidinium chloride the extent of binding declines and is accompanied by an increase in the autolytic cleavage reaction [Sim & Sim (1981) Biochem. J. 193, 129-141]. The autolytic cleavage reaction is therefore not independently activated with respect to the binding reaction. Its occurrence, however, is structurally restricted under physiological or limited denaturing conditions and is permissible only when C3 is brought to a higher denaturation state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call