Abstract
Polytetrafluoroethylene (PTFE)-based dry process for lithium-ion batteries is gaining attention as a battery manufacturing scheme can be simplified with drastically reducing environmental damage. However, the electrochemical instability of PTFE in a reducing environment has hampered the realization of the high-performance dry-processed anode. In this study, we present a non-electroconductive and highly ionic-conductive polymer coating on graphite to mitigate the electrochemical degradation of the PTFE binder and minimize the coating resistance. Poly(ethylene oxide) (PEO) and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) coatings on the anode material effectively inhibit the electron transfer from graphite to PTFE, thereby alleviating the PTFE breakdown. The graphite polymer coatings improved initial Coulombic efficiencies of full cells from 67.2% (bare) to 79.1% (PEO) and 77.8% (P(VDF-TrFE-CFE)) and increased initial discharge capacity from 157.7 mAh g(NCM)-1 (bare) to 185.1 mAh g(NCM)-1 (PEO) and 182.5 mAh g(NCM)-1 (P(VDF-TrFE-CFE)) in the full cells. These outcomes demonstrate that PTFE degradation in the anode can be surmounted by adjusting the electron transfer to the PTFE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.