Abstract

The objective of this study is to explore non-dyadic Haar wavelets for higher order integro-differential equations. In this research article, non-dyadic collocation method is introduced by using Haar wavelet for approximating the solution of higher order integrodifferential equations of Volterra and Fredholm type. The highest order derivatives in the integrodifferential equations are approximated by the finite series of non-dyadic Haar wavelet and then lower order derivatives are calculated by the process of integration. The integro-differential equations are reduced to a set of linear algebraic equations using the collocation approach. The Gauss - Jordan method is then used to solve the resulting system of equations. To demonstrate the efficiency and accuracy of the proposed method, numerous illustrative examples are given. Also, the approximated solution produced by the proposed wavelet technique have been compared with those of other approaches. The exact solution is also compared to the approximated solution and presented through tables and graphs. For various numbers of collocation points, different errors are calculated. The outcomes demonstrate the effectiveness of the Haar approach in resolving these equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call