Abstract
The increasing market demand for product variety forces manufacturers to design mixed-model assembly lines (MMAL) on which a variety of product models similar to product characteristics are assembled. This paper presents a method combining the new ranked based roulette wheel selection algorithm with Pareto-based population ranking algorithm, named non-dominated ranking genetic algorithm (NRGA) to a just-in-time (JIT) sequencing problem when two objectives are considered simultaneously. The two objectives are minimisation the number of setups and variation of production rates. This type of problem is NP-hard. Various operators and parameters of the proposed algorithm are reviewed to calibrate the algorithm by means of the Taguchi method. The solutions obtained via NRGA are compared against solutions obtained via total enumeration (TE) scheme in small problems and also against four other search heuristics in small, medium and large problems. Experimental results show that the proposed algorithm is competitive with these other algorithms in terms of quality and diversity of solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.