Abstract

Catalytic plate microchannel reactors (CPRs) are a promising means for modular hydrogen/fuels production from distributed natural gas resources. However, the equipment miniaturization presents challenges for process control, including spatially-distributed models, limited availability of measurements, and fast process time constants. In the present paper, we investigate the use of data-driven models—specifically, artificial neural networks (ANNs)—to estimate temperature “hotspots” within CPRs. We prescribe nonlinear transformations of the model inputs in the form of well-known dimensionless quantities (e.g., Reynolds number), and we show that these engineered features can improve the prediction capability of computationally parsimonious ANNs using a first-principles reactor model. Finally, we present a simulation case study that demonstrates the use of a trained ANN for inferential model predictive control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.