Abstract

• Cassia seed galactomannan oligosaccharides (CMOS) were stable during gastrointestinal digestion. • CMOS remarkably influenced human colonic microbiota composition. • CMOS fermentation majorly produced acetic acid and propionic acid, thus decreased intestinal pH. • CMOS with DP = 3 and 4 were prior utilized due to the activities of β-mannosidase and α-galactosidase. The digestibility and prebiotic potential of galactomannan oligosaccharides prepared from Cassia seed gum (CMOS) was studied. CMOS were tolerant against simulated gastrointestinal digestion. During in vitro human fecal fermentation with CMOS, the microbiota composition was significantly changed with promoted growth of potential beneficial genera (i.e. Bifidobacterium , Lactobacillus , Bacteroides , Veillonella ) while that of potential harmful genera (i.e. Fusobacterium , Lachnospiraceae , and Sutterella ) was inhibited. Short chain fatty acids were produced with decreased medium pH, while acetic acid (20.85 mM) and propionic acid (19.77 mM) were the predominant metabolites. For CMOS utilization, α-galactosidase and β-mannosidase were involved with the enzyme activity reached the maximum after 3 h fermentation. The HPAEC chromatograms showed that CMOS with DP = 3 and 4 were prior utilized through enzymatic hydrolysis within 36 h fermentation. Findings gained here will introduce the utilization and targeted production of CMOS (DP = 3 and 4) as prebiotics with defined structural features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.