Abstract

Mismeasurement of a dichotomous outcome yields an unbiased risk ratio estimate when there are no false positive cases (perfect specificity) and when sensitivity is non-differential with respect to exposure status. In studies where these conditions are expected, quantitative bias analysis may be considered unnecessary. We conducted a simulation study to explore the robustness of this special case to small departures from perfect specificity and stochastic departures from non-differential sensitivity. We observed substantial bias of the risk ratio with specificity values as high at 99.8%. The magnitude of bias increased directly with the true underlying risk ratio and was markedly stronger at lower baseline risk. Stochastic departure from non-differential sensitivity also resulted in substantial bias in most simulated scenarios; downward bias prevailed when sensitivity was higher among unexposed compared with exposed, and upward bias prevailed when sensitivity was higher among exposed compared with unexposed. Our results show that seemingly innocuous departures from perfect specificity (e.g., 0.2%) and from non-differential sensitivity can yield substantial bias of the risk ratio under outcome misclassification. We present a web tool permitting easy exploration of this bias mechanism under user-specifiable study scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.