Abstract

The Quantum Circuit Born Machine (QCBM) is a generative quantum machine learning model that can be efficiently trained and run on the NISQ era quantum processors. QCBM has greater expressive power than comparable classical neural networks such as Restricted Boltzmann Machine (RBM) and, therefore, has potential to demonstrate quantum advantage by generating high quality samples from the learned empirical distribution while using less computational resources than its classical counterpart. However, efficient training of QCBM remains a challenging problem. Traditional differentiable learning approach may not work well when the loss function is highly non-smooth. In such cases it may be more efficient to use the non-differentiable learning methods. This paper proposes a non-differentiable learning approach to the training of QCBM based on Genetic Algorithm (GA). The paper also presents results of the numerical experiments which compare performance of QCBM trained with GA against performance of the equivalent classical RBM and investigates the question of GA convergence as a function of QCBM architecture and the choice of algorithm’s hyperparameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.