Abstract

AbstractExtraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by bound charges. Great progress has been achieved in the characterization of such domain walls and, over the last decade, their potential for next‐generation nanotechnology has become clear. Established tomography techniques, however, are either destructive or offer insufficient spatial resolution, creating a pressing demand for 3D imaging compatible with future fabrication processes. Here, non‐destructive tomographic imaging of ferroelectric domain walls is demonstrated using secondary electrons. Utilizing conventional scanning electron microscopy (SEM), the position, orientation, and charge state of hidden domain walls are reconstructed at distances up to several hundreds of nanometers away from the surface. A mathematical model is derived that links the SEM intensity variations at the surface to the local domain wall properties, enabling non‐destructive tomography with good noise tolerance on the timescale of seconds. The SEM‐based approach facilitates high‐throughput screening of materials with functional domain walls and domain‐wall‐based devices, which is essential for monitoring during the production of device architectures and quality control in real‐time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.