Abstract

Application of supplementary cementitious materials for production of low CO2 concrete affects the reaction kinetics, which alters the setting time and strength development. The different early-age behavior is of concern for quality control of concrete. Non-destructive test is very useful for monitoring the quality of low CO2 binder systems. This paper presents a new technique to monitor the electrical conductivity and temperature at different depths of hydrating concrete. Indices from monitoring system (conductivity, maturity and formation factor) are compared with data from widely-used methods (ultrasonic pulse velocity, penetration resistance and isothermal calorimetry). Results show that indices from the system can replicate the hydration evolution, setting time and compressive strength of low CO2 concrete. Electrical conductivity of concrete is very sensitive to mineral reactions and it reflects the hydration kinetic consistent with evolution of heat release. Linear correlations are found for penetration resistance in relation to ultrasonic pulse velocity, formation factor and maturity, respectively. The effects of binder type and water-to-binder ratio on hardening are strongly dependent on temperature. The proposed approach enables to include all these factors in characterizing the hardening process of concrete onsite. It is shown that formation factor performs better than ultrasonic pulse velocity on indicating the setting process. Formation factor is also a good parameter for quantitative description of compressive strength development, which is independent of the binder types, mixture proportions and curing ages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.