Abstract

The concentration of magnetic particulate matter (PM) on the leaf surface (an indicator of current pollution) and topsoil (an indicator of magnetic PMs which have geogenic natural signal or historical pollution origin) was assessed in agricultural areas (conventional and organic vineyards). The main aim of this study was to explore whether magnetic parameters such as saturation isothermal remanent magnetization (SIRM) and mass-specific magnetic susceptibility (χ) can be a proxy for magnetic particulate matter (PM) pollution and associated potentially toxic elements (PTEs) in agricultural areas. Besides, wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF) was investigated as a screening method for total PTE content in soil and leaf samples. Both magnetic parameters (SIRM and χ) pinpoint soil pollution, while SIRM was more suitable for evaluating magnetic PM accumulated on leaves. The values of both magnetic parameters were significantly (p < 0.01) correlated within the same type of sample (soil-soil or leaf-leaf), but not between different matrixes (soil-leaf). Differences between magnetic particles' grain sizes among vegetation seasons in vineyards were obtained by observing the SIRM/χ ratio. WD-XRF was revealed to be an appropriate screening method for soil and leaf total element contents in agricultural ambient. For a more precise application of WD-XRF leaf measurements, specific calibration using a similar matrix to plant material is required. In parallel, measurements of SIRM, χ, and element content (by WD-XRF) can be recommended as user-friendly, fast, and eco-sustainable techniques for determining magnetic PM and PTE pollution hotspots in agricultural ambient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call