Abstract
Complete inspection of workpiece surface integrity invariably involves a form of destructive testing to enable the assessment of microstructural defects such as machining-induced white layers and near-surface plastic deformation. The incumbent offline and destructive microscopy inspection process is incompatible with both a digital and sustainable manufacturing vision of zero waste, as such, a non-destructive technique which utilises a novel X-ray diffraction surface integrity inspection method (XRD-SIIM) has been developed. This approach has been designed to complement traditional machinability-type assessments of tool life and machined surface topography, establishing a new process flow for validation. In this paper, for the first time, non-destructive on-machine validation of workpiece microstructural surface integrity is demonstrated, via a comparative investigation into the effect of insert grade, cutting speed and coolant delivery method on the depth of the imparted plastic deformation depth. It is shown that XRD-SIIM allows repeatable, non-destructive determination of deformed layers within a typical machining centre enclosure, with comparable findings to the incumbent cross-sectional microscopy approach. The generation of surface integrity digital fingerprints of a machining operation facilitates rapid comparison between testing variables, with a transition to an objective quantifiable assessment rather than one which open to subjectivity. In turn, XRD-SIIM expedites the development and benchmarking of new operations, tooling, materials, or coolant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: CIRP Journal of Manufacturing Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.