Abstract
This paper presents a financially viable and non-destructive rail-based video monitoring method that utilizes optical image segmentation to estimate the canopy leaf area index (LAI) of greenhouse tomato plants. The LAI is directly related to the time-dependent crop growth and indicates plant health and potential crop yields. A rail-guided mobile camera system was commissioned that records continuous images by scanning multiple rows of two tomato plant species for over two years. UNET semantic image segmentation of the individual image frames was performed to compute the relative leaf area over time. This study also describes the image annotation process necessary to train the neural network and evaluate the segmentation results. The results are calibrated and compared to the defoliation-based (destructive) LAI estimation performed by the grower. This UNET segmentation performs well, which is enabled through the controlled environment and the well-defined boundary conditions provided by the greenhouse environment and the managed measurement conditions. Our results deviate from the manual LAI estimation by less than ten percent. Further, we are able to minimize confusion between foreground and background plants and other obstructions with an estimated error smaller than three percent, which is strictly necessary to produce reproducible results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.