Abstract

Recent methods for detailed and accurate biomass and carbon stock estimation of forests have been driven by advances in remote sensing technology. The conventional approach to biomass estimation heavily relies on the tree species and site-specific allometric equations, which are based on destructive methods. This paper introduces a non-destructive, laser-based approach (terrestrial laser scanner) for individual tree aboveground biomass estimation in the Royal Belum forest reserve, Perak, Malaysia. The study area is in the state park, and it is believed to be one of the oldest rainforests in the world. The point clouds generated for 35 forest plots, using the terrestrial laser scanner, were geo-rectified and cleaned to produce separate point clouds for individual trees. The volumes of tree trunks were estimated based on a cylinder model fitted to the point clouds. The biomasses of tree trunks were calculated by multiplying the volume and the species wood density. The biomasses of branches and leaves were also estimated based on the estimated volume and density values. Branch and leaf volumes were estimated based on the fitted point clouds using an alpha-shape approach. The estimated individual biomass and the total above ground biomass were compared with the aboveground biomass (AGB) value estimated using existing allometric equations and individual tree census data collected in the field. The results show that the combination of a simple single-tree stem reconstruction and wood density can be used to estimate stem biomass comparable to the results usually obtained through existing allometric equations. However, there are several issues associated with the data and method used for branch and leaf biomass estimations, which need further improvement.

Highlights

  • Estimation of carbon stock in forests is usually obtained from the measurement of above-ground biomass [1]

  • This study aims to estimate individual tree biomass of various species of trees in a tropical rain forest in Malaysia using point clouds generated from Terrestrial laser scanner (TLS)

  • Field tree height and Crown Base Height (CBH) were only measured on selected trees

Read more

Summary

Introduction

Estimation of carbon stock in forests is usually obtained from the measurement of above-ground biomass [1]. The most cited allometric equations for biomass estimation in South East Asia were only obtained from certain studies that cover certain tree species in specific areas [1,3]. Terrestrial sensors have been used for a large-scale biomass estimation, and the upscaling process of such measurements over larger area is usually done using airborne and spaceborne remote sensing data. Previous studies have shown that remote sensing data can be used to estimate aboveground biomass by relating individual tree properties (e.g., tree height, DBH, crown size and etc.) and optical properties of reflection collected over forested areas [1,4,5,6,7,8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call