Abstract
The mode of action of proteins is to a large extent given by their ability to adopt different conformations. This is why imaging single biomolecules at atomic resolution is one of the ultimate goals of biophysics and structural biology. The existing protein database has emerged from X-ray crystallography, NMR or cryo-TEM investigations. However, these tools all require averaging over a large number of proteins and thus over different conformations. This of course results in the loss of structural information. Likewise it has been shown that even the emergent X-FEL technique will not get away without averaging over a large quantity of molecules. Here we report the first recordings of a protein at sub-nanometer resolution obtained from one individual ferritin by means of low-energy electron holography. One single protein could be imaged for an extended period of time without any sign of radiation damage. Since ferritin exhibits an iron core, the holographic reconstructions could also be cross-validated against TEM images of the very same molecule by imaging the iron cluster inside the molecule while the protein shell is decomposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.