Abstract

The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material. Hence, inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention. Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils. The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content, while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer, respectively. The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz. The 10% lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10% bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ, respectively, at a frequency of 300 kHz. A new mathematical model has been accordingly proposed to model the non-destructive electrical impedance-frequency relationship for both untreated and treated ultra-soft clayey soils. The new model has shown a good agreement with experimental data with coefficient of determination (R2) up to 0.99 and root mean square error (RMSE) of 0.007 kΩ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call