Abstract

AbstractThe concentration of lattice defects in plastically deformed metals can be measured by positron annihilation spectroscopy (PAS) with an outstanding sensitivity. The positron acts as a highly mobile atomic probe sensitive to all defects forming an open volume in the lattice. Using a positron microbeam, like the Bonn positron microprobe (BPM), the lateral distribution of these defects in the sub‐surface layer can be mapped with a resolution down to one micrometer. In this work the changes in the defect concentration were determined during tension tests on the aluminium alloys AA2024, AA6013 and AA6082. The results show that these changes depend on the configuration and the heat treatment of the alloys. Moreover, alternating load fatigue tests were performed on AA6082. The defect distribution was measured laterally resolved employing the BPM in several early stages of fatigue. Using those results the number of cycles to fatigue failure was extrapolated. The trueness of the prediction was tested by further fatiguing the sample until failure occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call