Abstract

Salt content is a crucial indicator of the maturity and internal quality of salted duck eggs (SDEs) during the pickling process. However, there is currently no valid and rapid method available for accurately detecting salt content. In the present study, we utilized hyperspectral imaging to no-destructively determine the salt content in egg yolks, egg whites, and whole eggs during the curing period. Firstly, principal component analysis was applied to explain the characteristics of egg yolk and white morphology transformation of SDEs with different maturities during curing. Secondly, sensitive spectral factors representative of changes in the salt content of SDEs were extracted by three spectral transformations (Savitzky-Golay SG, continuum removal CR, and first-order derivation FD) and three approaches of selecting characteristic wavelengths (successive projection algorithm SPA, uninformative variables elimination UVE and competitive adaptive reweighting sampling algorithm CARS). The results of the PLSR model suggested that the optimal models for predicting salt content in egg yolks, whites, and whole eggs were SG-UVE-PLSR (predicted coefficient of determination Rp2=0.912, predicted standard deviation SEp=0.151, residual prediction deviation RPD = 3.371), CR-CARS-PLSR (Rp2=0.873, SEp=0.862, RPD = 2.806), and CR-UVE-PLSR (Rp2=0.877, SEp=0.680, RPD = 2.851), respectively. Eventually, the optimal prediction model for the salt content of the whole egg was employed to a pixel spectral matrix to calculate the salt content values of pixel points on the hyperspectral image of SDEs. Additionally, pseudo-color techniques were employed to visualize the spatial distribution of predicted salt content. This work will provide a theoretical foundation for rapidly detecting maturity and enabling high-throughput quality sorting of SDEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call