Abstract
Ground penetrating radar (GPR) is a non-destructive evaluation technique, which has been applied to assess as-built pavement conditions and to evaluate damage and deterioration that develop over time. The objective of this study was to develop a methodology that uses GPR to detect moisture-related stripping damage in asphalt pavements. To achieve this objective, A Finite-Difference Time-Domain based simulation program was used to study the propagation of GPR signals in a stripped pavement. Field test data including GPR scans and visual inspection of cores of 202 pavement sections were used to study the relationship between GPR traces and asphalt concrete (AC) stripping damage. Based on this analysis, a novel GPR-based indicator, known as the accumulating in-layer peaks (AIP), was introduced to detect stripping damage in asphalt pavements. Field data and pavement cores were used to validate the proposed indicator and to evaluate its effectiveness in detecting the presence, extent, and severity of stripping in in-service pavement sections. Based on the results of the study, it was found that the presence of a void in the middle of the AC layer resulted in positive peaks in the reflected waves as indicated by the simulation of GPR signals. In addition, detected intermediate wave peaks between the surface and the interface between the AC and base layers on the GPR traces were associated with stripping damage in the AC layer. The AIP predicted accuracies for stripped and non-stripped sections were 80% and 96%, respectively, indicating its effectiveness in detecting stripping damage in flexible pavements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.