Abstract
In the present study, the prediction of the critical buckling load of an axially compressed cylindrical shell is investigated based on the novel non-destructive probing method with the aid of Measured Geometric Imperfections (MGI). A laser point scanner is used to obtain the imperfection data. The imperfection data is analyzed to find a sample space of points where the buckling is likely to initiate. The optimum location for probing is determined from the sample set by finding the Least Resistance Path (LRP) to probing using two methods, one based on the Energy barrier and the other from the reaction forces observed corresponding to deep probe advancements. It is found that MGI can aid the procedure by improving the selection of the probing points and hence the prediction accuracy; However, MGI does not eliminate the need for multiple probing. The study has shown the possibility of obtaining multiple probing locations that can predict the peak load within acceptable levels of accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.