Abstract

Acoustic emission (AE), damping and dilatometry techniques have been developed to study microstructural changes due to thermal stresses in commercially pure Mg-alumina metal matrix composites submitted to thermal cycling. AE shows that the thermal stresses are accommodated by dislocation generation and motion in certain temperature ranges whose fashion is dependent on the upper temperature of cycling and the amount of reinforcement. An increment in dislocation density connected with a redistribution of solute atoms on dislocation lines is revealed after the thermal cycling by damping measurements. The thermal stresses are also characterised by the residual deformation measurements carried out by the dilatometry. For a constant upper temperature of cycling the microstructure does not develop distinctly with increasing number of cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.