Abstract

Visible and near-infrared (Vis/NIR) hyperspectral imaging (HSI) was used for rapid and non-destructive determination of macro- and micronutrient contents in persimmon leaves. Hyperspectral images of 687 leaves were acquired in the 500–980 nm range over 6 months, covering a complete vegetative cycle. The average reflectance spectrum of each leaf was extracted, and foliar ionomic analysis was used as a reference method to determine the actual concentration of the nutrients in the leaves. Analyses were performed via emission spectrometry (ICP-OES) for macro- and micronutrients after microwave digestion and using the Kjeldahl method to quantify nitrogen. Partial least square regression (PLS-R) was used to predict the nutrient concentration based on spectral data from the leaf using actual values of each element as predictor variables. Several methods were used to pre-process the spectra, including Savitzky–Golay (SG) smoothing, standard normal variate (SNV) and first (1D) and second derivatives (2D). Seventy-five percent of the samples were used to calibrate and validate the model by cross-validation, whereas the remaining twenty-five % were used as an independent test set. The best performance of the models for the test set achieved an R2 = 0.80 for nitrogen. Results were also satisfactory for phosphorous, calcium, magnesium and boron, with determination coefficient R2 values of 0.63, 0.66, 0.58 and 0.69, respectively. For the other nutrients, lower prediction rates were attained (R2 = 0.48 for potassium, R2 = 0.38 for iron, R2 = 0.24 for copper, R2 = 0.23 for zinc and R2 = 0.22 for manganese). The variable importance in projection (VIP) was used to extract the most influential bands for the best-predicted nutrients, which were N, K and B.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.