Abstract
Computer Vision Systems (CVS) offer a non-destructive and contactless tool to assign visual quality level to fruit and vegetables and to estimate some of their internal characteristics. The innovative CVS described in this paper exploits the combination of image processing techniques and machine learning models (Random Forests) to assess the visual quality and predict the internal traits on unpackaged and packaged rocket leaves. Its performance did not depend on the cultivation system (traditional soil or soilless). The same CVS, exploiting its machine learning components, was able to build effective models for either the classification problem (visual quality level assignment) and the regression problems (estimation of senescence indicators such as chlorophyll and ammonia contents) just by changing the training data. The experiments showed a negligible performance loss on packaged products (Pearson’s linear correlation coefficient of 0.84 for chlorophyll and 0.91 for ammonia) with respect to unpackaged ones (0.86 for chlorophyll and 0.92 for ammonia). Thus, the non-destructive and contactless CVS represents a valid alternative to destructive, expensive and time-consuming analyses in the lab and can be effectively and extensively used along the whole supply chain, even on packaged products that cannot be analyzed using traditional tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.