Abstract

In this research, a comprehensive multi-technique analysis, including synchrotron-based X-ray micro-computed tomography, is used to visualize the microstructure of alteration in a very particular Roman glass fragment, in which millennia of corrosion history have not significantly impacted the integrity of the fragment itself. This exceptionally rare occurrence has allowed for the maximization of meaningful data acquisition, by examining the alteration structures from the macro to the nanoscale. This study elucidates the intricate mechanisms underlying glass corrosion when in contact with soil, providing quantitative data and phase correlations in the alteration structures. These findings validate and refine existing predictive corrosion models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.