Abstract

In multi-component systems, several rogue waves can be simultaneously excited using simple initial conditions in the form of a plane wave with a small amplitude single-peak perturbation. This is in drastic contrast with the case of multi-rogue waves of a single nonlinear Schrödinger equation (or other evolution equations) that require highly specific initial conditions to be used. This possibility arises due to the higher variety of rogue waves in multi-components systems each with individual eigenvalue of the inverse scattering technique. In theory, we expand the limited class of Peregrine-type solutions to a much larger family of non-degenerate rogue waves. The results of our work may explain the increased chances of appearance of rogue waves in crossing sea states (wind generated ocean gravity waves that form nonparallel wave systems along the water surface) as well as provide new possibilities of rogue wave observation in a wide range of multi-component physical systems such as multi-component Bose–Einstein condensates, multi-component plasmas and in birefringent optical fibres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.