Abstract

A digital signal processing (DSP) technique is presented that can compensate for the in-phase/quadrature-phase (I/Q) mismatch in low-intermediate frequency (IF) receivers. In particular, a non-data-aided (NDA) I/Q mismatch estimator is derived by exploiting the statistical independence between desired and image signals. The proposed technique obtains two baseband signals (uncompensated desired and image signals) from a digital IF signal and processes them to estimate and compensate for the I/Q mismatch. The mean-square error (MSE) of the estimate is analyzed. Computer simulation results indicate that the proposed technique can outperform existing adaptive DSP techniques that are based on the use of blind signal separation algorithms. It is observed that the image rejection ratio (IRR) of the proposed technique decreases monotonically with the number of observed samples for estimation, while that of conventional methods exhibits some floor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.