Abstract

In this article, the conjugate natural convection in an anisotropic fluid-filled porous enclosure has been investigated using Brinkman extended non-Darcy flow model. The finite volume method is applied to solve the dimensionless partial differential equations governing the flow and heat transfer. The governing parameters considered are the ratio of the wall thickness to its height (0.05 ≤ D ≤ 0.2), the wall to porous thermal conductivity ratio (1 ≤ Kr ≤ 10), the permeability ratio (0.5 ≤ K* ≤ 5), the modified Darcy number (0.001 ≤ Da ≤ 0.1), and the Rayleigh number (100 ≤ Ra ≤ 1000). It is found that increasing either the Rayleigh number or the permeability ratio can increase the rates of heat transfer for both the wall and the porous medium. However, increasing the modified Darcy number decreases the average Nusselt numbers for the wall and the porous medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.