Abstract

Silver nanoparticles (AgNPs) are compounds used in numerous consumer products because of their desirable optical, conductive and antibacterial properties. However, several in vivo and in vitro studies have raised concerns about their potential developmental toxicity. Here, we employed a human embryonic stem cell model to evaluate the potential ectodermal toxicity of AgNPs, at human relevant concentrations. Among the four major ectodermal lineages tested, only cranial placode specification was significantly affected by AgNPs and AgNO3, morphology-wise and in the expression of specific markers, such as SIX3 and PAX6. Mechanistically, we found that the effects of AgNPs on the cranial placode differentiation were probably due to Ag ion leakage and mediated by the FGF signaling. Thus, AgNPs may have the ability to alter the early stages of embryonic development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.