Abstract

Copper is integral to the mitochondrial respiratory complex IV and contributes to proliferation and differentiation, metabolic reprogramming and mitochondrial function. The K562 cell line was exposed to a non-cytotoxic copper overload to evaluate mitochondrial dynamics, function and cell fate. This induced higher rates of mitochondrial turnover given by an increase in mitochondrial fusion and fission events and in the autophagic flux. The appearance of smaller and condensed mitochondria was also observed. Bioenergetics activity included more respiratory complexes, higher oxygen consumption rate, superoxide production and ATP synthesis, with no decrease in membrane potential. Increased cell proliferation and inhibited differentiation also occurred. Non-cytotoxic copper levels can modify mitochondrial metabolism and cell fate, which could be used in cancer biology and regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.